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Nonlinear sloshing in zero gravity
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We study the effect of a time-periodic, lateral acceleration on the two-dimensional
flow of a fluid with a free surface subject to surface tension, confined between two
plane, parallel walls under conditions of zero gravity. We assume that the velocity
of each contact line is a prescribed, single-valued function of the dynamic contact
angle between fluid and solid at the wall. We begin by obtaining analytical solutions
for the small-amplitude standing waves that evolve when this function is linear,
the fluid is inviscid and the lateral acceleration is sufficiently small. This leads to
damping of the motion, unless either the contact angles are fixed or the contact lines
are pinned. In these cases, we include the effect on the flow of the wall boundary
layers, which are the other major sources of damping. We then consider the weakly
nonlinear solution of the inviscid problem when the contact angle is almost constant
and the external forcing is close to resonance. This solution indicates the possibility
of a hysteretic response to changes in the forcing frequency. Finally, we examine
numerical solutions of the fully nonlinear, inviscid problem using a desingularized
integral equation technique. We find that periodic solutions, chaotic solutions and
solutions where the topology of the fluid changes, either through self-intersection or
pinch off, are all possible.

1. Introduction
In a microgravity environment, the motion of fluids is driven by surface tension

and external forces. This leads to problems in fluid processing that are rather different
to those encountered under normal gravity (for example, Ostrach 1982). One key
application where it is crucial to understand the large-amplitude motion of a body
of fluid under microgravity conditions is that of a satellite with a partially filled fuel
tank. In this case, external forcing is provided by small rockets that are used to orient
the satellite. Modelling the details of this fluid/structure interaction is difficult, and
the numerical techniques that have been used in previous work are not well suited to
capturing the details of the fluid flow close to moving contact lines (see, for example,
Gerrits et al. 1999). A satellite that will gather experimental data on this problem is
due to be launched this year (Gerrits & Veldman 2000).

In order to gain more detailed insight into the response of a body of fluid to
external forcing under microgravity conditions, we study a two-dimensional model
problem, that of a deep fluid contained between two parallel walls and subject to
external, lateral, time-harmonic forcing. We find that the motion of the two contact
lines, where the fluid is in contact with both the atmosphere and the solid wall,
plays a crucial role in determining the response of the fluid. Kamotani et al. (1995)
have tackled precisely this problem using a commercial CFD package, but confined
their attention to small-amplitude motions at moderate to low Reynolds numbers.
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Figure 1. The fluid, confining walls and coordinate system.

A closely related problem, that of the settling of an initially disturbed free surface,
has previously been tackled by several authors (see Dreyer et al. 1998 for a recent
review), notably Hocking (1987), who considered the situation under normal gravity,
and Weislogel & Ross (1990) and Wölk et al. (1997), who discuss the behaviour of
a free surface when gravity is suddenly reduced to zero, as occurs in a drop-tower
experiment. In each case, the authors consider small-amplitude motions of a free
surface, and were able to obtain reasonably good agreement with experiment. We
shall discuss some aspects of their work in more detail later.

After setting up the governing equations for our model problem in § 2, we begin by
studying the standing waves that are generated by small-amplitude forcing in § 3. In
§ 3.1 we examine large-Reynolds-number standing wave solutions. We find that the
effect of viscosity will be important in boundary layers at the walls when either the
contact angles are fixed or the contact lines are pinned, and study these cases in §§ 3.2
and 3.3. In § 4, we perform a weakly nonlinear analysis of the inviscid problem for
forcing close to a resonant frequency when the contact angles are almost constant.
Finally, in § 5, we study the fully nonlinear, inviscid problem using a desingularized
integral equation method, after using the analytical solutions that we have obtained
to validate this numerical technique.

2. The initial value problem
We consider the two-dimensional motion of a Newtonian fluid in a parallel-sided

container, as illustrated in figure 1, which also shows the (x, y)-coordinate system.
The depth of the fluid is sufficient that it can be assumed infinite. The fluid has a free
surface, with surface tension. At each contact line, the contact line velocity is assumed
to be a prescribed, single-valued function of the dynamic contact angle. There is no
background gravitational field, but the fluid undergoes a time-periodic acceleration
in the lateral (x) direction. This can be thought of as due either to lateral shaking of
the container, or to a weak, oscillatory, background gravitational field, as can exist
on spacecraft (g-jitter). The velocity and pressure fields in the fluid are u(x, y, t) and
p(x, y, t), and the free surface lies at y = η(x, t). We work in terms of dimensionless
variables, with length, time, velocity and pressure scaled with a, (ρa3/σ)1/2, (σ/aρ)1/2

and σ/a respectively, where a is the lateral extent of the container, and ρ and σ are
the density and surface tension of the fluid.
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The dimensionless governing equations are

∂u

∂t
+ u · ∇u = −∇p+ Bo sinωt∇x+ Re−1∇2u, ∇ · u = 0

for 0 6 x 6 1, y 6 η(x, t), t > 0, (2.1)

to be solved subject to

∂η

∂t
+ ux

∂η

∂x
= uy, (2.2)
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∂η
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∂ux
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]
= 0, (2.4)

at y = η(x, t) for 0 6 x 6 1, where u = (ux, uy), and

u = 0 at x = 0 and x = 1, (2.5)

u→ 0 as y → −∞, (2.6)

u = 0, η = ηi(x) when t = 0, (2.7)

where ηi(x) is the initial displacement of the free surface. The fluid is stationary when
t = 0. The contact line boundary condition is

∂η

∂t
=


C

(
∂η

∂x

)
at x = 0,

C

(
−∂η
∂x

)
at x = 1,

(2.8)

where C(.) is some prescribed function. The dimensionless parameters are

Re =

(
ρaσ

µ2

)1/2

, Bo =
ρa2Aω2

0

σ
, ω =

(
ρa3

σ

)1/2

ω0, (2.9)

the Reynolds number, Bond number and dimensionless frequency respectively, where
ω0 and A are the frequency and amplitude of the lateral excitation. Note that Re−1

is often referred to as the Ohnesorge number, Oh. We will assume that Re � 1, so
that the fluid is inviscid at leading order outside the boundary layers. For water,
Re ≈ 8000a1/2 when a is measured in metres, so we need the container to be wider
than about 10−3 m for this approximation to be valid.

We impose a no-slip boundary condition along each wall of the container. It is
well-known (Dussan V. & Davis 1974) that this leads to a physically unacceptable
singularity in the velocity gradient at the contact line, and hence to a singular force
there, unless the contact line is either pinned or meets the wall at a tangent. This
difficulty can be dealt with mathematically by postulating that the fluid slips at
the wall in some small neighbourhood of the contact line. If this neighbourhood



368 J. Billingham

is sufficiently small, viscous forces cause the free surface to bend through an O(1)
angle close to the wall, so that the limiting contact angle as the contact line is
approached from the bulk of the fluid (the apparent contact angle) is different from
the microscopic, or actual contact angle (Cox 1986, 1998). We can therefore think of
the function C(∂η/∂x) as specifying the dependence of the inner limit of the outer
solution – the apparent contact angle. It is usual to think of this as changing as the
outer flow develops, whilst the microscopic contact angle remains constant. Another
interpretation is available using the theory of Shikhmurzaev (1993), in which, although
the region where the fluid slips at the wall is not small enough that viscous bending
affects the contact angle at leading-order, the microscopic contact angle varies as a
function of the flow, due to surface tension relaxation effects. We will not consider
the details of how the contact line singularity is to be resolved in this paper. One
consequence of this is that the viscous correction to the leading-order deformation
of the free surface is logarithmically singular as x → 0 and x → 1. This means
that, in the following calculations, any correction term in an expansion for some
property of the flow that depends upon the viscous correction term in the expansion
of the contact line condition (2.8) is dependent upon the detailed resolution of the
contact line singularity. We regard such corrections as beyond the scope of the present
paper.

In this paper, we will assume that

C

(
∂η

∂x

)
= λ

∂η

∂x
, (2.10)

so that the contact line velocity varies linearly with the slope at the contact line, and
the static contact angle is π/2. In particular, the speed of the contact line tends to
infinity as the contact angle tends to zero or π. It is unlikly that this is precisely the
correct model for any given fluid/solid combination, but it is also clear that there is,
as yet, no universally accepted model of the form (2.8) that we can use. As we have
discussed above, θc is the apparent contact angle – the outer limit of the inner solution
close to the contact line, where viscosity is important, and we have yet to attempt
to solve the inner problem. In addition, there is no agreement on the dependence of
the actual dynamic contact angle on the contact line velocity, although many models
have been proposed (see Shikhmurzaev 1993 for a review of these, along with a new
model). The simple model, (2.10), which we use here, should be seen as a reasonable
estimate of the actual behaviour, and our results give us some idea of the qualitative
behaviour for large-amplitude displacements of the free surface. Of course, for small-
amplitude motions, with which much of this paper is concerned, (2.10) is equivalent
to the linearized form of (2.8), whatever model is used.

We begin by studying the linearized version of the problem. We expect that this
will be appropriate when Bo� 1. As we shall see, it is possible to make considerable
analytical progress on this problem, since the domain of solution for the linearized
problem is a semi-infinite strip. We would not expect the qualitative nature of the
solution to change for static contact angles moderately different from π/2. The
boundary condition (2.10) was also used by Hocking (1987) in his analysis of the
unforced response of this system. Kamotani et al. (1995) and Wölk et al. (1997) used
a similar boundary condition valid for an arbitrary static contact angle, but with
the dynamic contact angle a linear function of the displacement of the free surface
rather than its velocity. Although this is hard to justify on physical grounds, it is
equivalent to (2.10) for the small-amplitude, time-harmonic motions that they were
studying.
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3. Standing wave solutions for forcing of small amplitude
In this section, we consider what happens when the external forcing is of small

amplitude. These analytical results are of interest in themselves, and also provide a
good test of the numerical solution method that we describe in § 5. Although it is
possible to scale the Bond number, Bo, out of the problem, to avoid confusion we
will not do this, since we will need to assume in §§ 3.2 and 3.3 that Bo = O(Re−1/2).
Of course, this means that we should expect the deformation of the free surface to be
proportional to Bo in the following calculations.

At leading order, for deformations of the free surface of sufficiently small amplitude,
(2.1)–(2.7) become

∂u

∂t
= −∇p+ Bo sinωt∇x+ Re−1∇2u, ∇ · u = 0

for 0 6 x 6 1, y 6 0, t > 0, (3.1)

to be solved subject to

∂η

∂t
= uy, p = −∂

2η

∂x2
− 2Re−1 ∂ux

∂x
, Re−1

(
∂ux

∂y
+
∂uy

∂x

)
= 0 at y = 0, (3.2a–c)

and

u = 0 at x = 0 and x = 1, (3.3)

u→ 0 as y → −∞, (3.4)

u = 0, η = 0 when t = 0. (3.5)

For simplicity, we will only consider the standing wave driven by the lateral forcing,
which will be the leading-order solution of this linear problem for t � 1 once the
initial transients have decayed. Note that this standing wave is antisymmetric about
the line x = 1/2. We pose asymptotic expansions

u = u0 + Re−1/2u1 + o(Re−1/2), p = p0 + Re−1/2p1 + o(Re−1/2),

η = η0 + Re−1/2η1 + o(Re−1/2),

}
(3.6)

for Re� 1, and substitute into (3.1)–(3.5). At leading order, the pressure is harmonic,
and is given by

p0 = Bo sinωt
(
x− 1

2

)
+

∞∑
n=1

Bn(t) cos(2n− 1)πx e(2n−1)πy, (3.7)

with the functions Bn(t) to be determined. The dynamic boundary condition, (3.2b),
at leading order, when integrated twice, gives

η0 = − 1
6
Bo sinωt(x− 1

2
)3 + B0(t)(x− 1

2
) +

∞∑
n=1

1

(2n− 1)2π2
Bn(t) cos(2n− 1)πx. (3.8)

Note that we can express the linear term as a Fourier series, using

x− 1
2

= −4

∞∑
n=1

1

(2n− 1)2π2
cos(2n− 1)πx. (3.9)

We must, however, take care, since the derivative of this series is not everywhere
constant, but includes a periodic sequence of delta functions located at the walls,
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because the function that the series represents is periodic and only piecewise linear.
Similar comments apply to the Fourier series expansion of the cubic term in (3.8).
In particular, we now apply the contact line condition, (2.8), at leading order, and
calculate the slope at x = 0 on the assumption that the function whose Fourier series
appears in (3.8) has zero slope at the origin, so that the slope is given by the algebraic
terms alone in (3.8). As a consequence, we must have

Bn → 0 as n→∞. (3.10)

We find that

B0 = 1
8
Bo sinωt+

1

λ

{ ∞∑
m=1

1

(2m− 1)2π2

∂Bm

∂t
− 1

2

∂B0

∂t
+ 1

48
Boω cosωt

}
. (3.11)

The kinematic condition, (3.2a), gives, equating coefficients of cos(2n−1)πx at leading
order,

∂2Bn

∂t2
+ ω2

2n−1Bn = 4
∂2B0

∂t2
− 1

2

{
8

(2n− 1)2π2
− 1

}
Boω2 sinωt, (3.12)

where

ω2
m = m3π3. (3.13)

We can combine (3.11) and (3.12) by defining B̂n through

Bn = 4B0 + (2n− 1)2π2B̂n, (3.14)

so that

∂2B̂n

∂t2
+ ω2

2n−1B̂n =
1

(2n− 1)2π2

{
1
2
(ω2 − ω2

2n−1)− 4ω2

(2n− 1)2π2

}
Bo sinωt

−4(2n− 1)π

λ

( ∞∑
m=1

∂B̂m

∂t
+ 1

48
Boω cosωt

)
, (3.15)

whilst

p0 = Bo(x− 1
2
) sinωt+

∞∑
n=0

{(2n− 1)2π2B̂n + 4B0} cos(2n− 1)πx e(2n−1)πy. (3.16)

The time-harmonic solutions of the unforced version of (3.15) were studied by
Hocking (1987), who made the substitution B̂n = bn eiωt when Bo = 0. He showed
that there is a sequence of resonant frequencies, ω = Ωm, which are complex for
0 < λ < ∞, and are given by the solutions of

∞∑
n=1

2n− 1

ω2
2n−1 − Ω2

m

+
λ

4πiΩm
= 0. (3.17)

When λ = 0 (pinned contact lines) or λ = ∞ (fixed contact angles), the resonant
frequencies of the system are real, and we conclude that the contact lines provide
no damping of the motion. In these cases, if the excitation is at one of the resonant
frequencies, the solution grows linearly with time. We therefore consider these two
situations separately below, and include the effect of the viscous boundary layers on
the solid walls, since they are then the main source of damping. In contrast, unless λ
is either sufficiently large or sufficiently small (we will quantify this later), the motion
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Figure 2. The three resonant frequencies with the smallest real parts, Ω1, Ω2 and Ω3, obtained from
(3.17). The points at which λ = 0.1, 1 and 10 are marked. Each frequency changes monotonically
with λ and is real when λ = 0 or ∞.

of the contact lines is the dominant source of damping of the fluid motion. The
three resonant frequencies with the smallest real parts, Ω1, Ω2 and Ω3, are plotted in
figure 2.

3.1. Solution for 0 < λ < ∞
In order to determine the standing wave excited by the lateral forcing, we simply seek
a solution of the form

B̂n = Rn eiωt. (3.18)

Since the unforced system is damped, we know that Rn must be bounded. We find
that the deformation of the free surface is given by

η(x, t) = eiωt

∞∑
n=1

R̂n cos(2n− 1)πx, (3.19)

where

R̂n =
Bo

ω2
2n−1 − ω2

{
4i

(2n− 1)π
+

4(2n− 1)πω

λ+ 4iωS1

(4ω2S2 + 1
24

)

}
, (3.20)

and

S1 =

∞∑
m=1

(2m− 1)π

ω2
2m−1 − ω2

, S2 =

∞∑
m=1

1

(2m− 1)4π4(ω2
2m−1 − ω2)

. (3.21)

Note that the limiting value of this expression as ω → ω2m−1 is well-defined. Figure 3
shows the maximum amplitude of the standing wave solution as a function of ω
for λ = 0.1, 1 and 10. This should be compared with figure 2, which shows the
resonant frequencies of the system. As we would expect, the maximum amplitude of
the standing wave has local maxima in the neighbourhood of the real part of the
resonant frequencies.

In the work of Kamotani et al. (1995), the dimensionless deformation of the free
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Figure 3. The maximum amplitude of the standing wave solution for λ = 0.1, 1 and 10.

surface is everywhere less that 0.015, which, at first sight means that their results
should be directly comparable to ours. However, their results are for rather small
Reynolds numbers (Re < 200), and we find that their free-surface deformations are
somewhat smaller than those that we predict, presumably due to the effect of viscosity
in both the bulk fluid and the surface boundary layer, which we neglect. The authors
themselves state that they were unable to resolve the boundary layers numerically for
larger values of the Reynolds number. In addition, their method of dealing with the
stress singularity at the contact lines is unclear.

3.2. Fixed contact angles (λ = ∞)

As we shall see below, the presence of boundary layers on the walls of the container
leads to a correction to the outer flow at O(Re−1/2). This means that, when the
lateral excitation is at one of the resonant frequencies, we need to assume that
Bo = O(Re−1/2) for the standing wave that it excites to be of O(1) as Re → ∞. We
therefore define

Bo = Re1/2Bo, (3.22)

with Bo = O(1). At leading order, (3.11) and (3.15) now show that B0 = 0 and

∂2B̂n

∂t2
+ ω2

2n−1B̂n = 0. (3.23)

The resonant frequencies of the system are therefore ω2n−1 at leading order.
At this point, we make a small diversion to consider the solution of the unforced,

inviscid problem,

η =

∞∑
n=1

B̂n0 cosω2n−1t cos(2n− 1)πx, (3.24)

where the constants B̂n0 are determined by the Fourier components of a non-zero
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Figure 5. The initial motion of the free surface close to the contact line when η(x, 0) = x− 1
2
, for a

fixed contact angle (λ = ∞).

initial displacement of the free surface. The position of the contact line at x = 0 is
shown in figure 4 for η(x, 0) = x− 1

2
. The jaggedness of the motion is striking, and

is a fully reproducible feature of the flow, arising from the form of the analytical
solution, (3.24). The initial motion of the contact line as the slope of the free surface
adjusts from the initial contact angle to ∂η/∂x = 0 is violent, and locally given by the
similarity solution studied by Billingham & King (1995), where lengths scale on t2/3.
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This is illustrated in figure 5, which shows capillary waves propagating away from the
contact line, in agreement with figure 3 of Billingham & King (1995). Once the waves
generated at each of the contact lines begin to interact, the irregular motion sets in.
It is also straightforward to include the effect of the damping due to the boundary
layers on the walls using the results given by Hocking (1987), so that

η =

∞∑
n=1

B̂n0 exp

{
−
(ω2n−1

2Re

)1/2

t

}
cos

{
ω2n−1 +

(ω2n−1

2Re

)1/2
}
t cos(2n− 1)πx. (3.25)

For water between walls 1 cm apart, Re ≈ 800, and this case is also shown in figure 4.
Note that the time scale is approximately 0.12 s.

Returning now to consider the effect of the lateral excitation, we assume that
ω = ω2N−1, and seek a standing wave solution

B̂n =

{
B̄N exp(iω2N−1t) for n = N,

0 for n 6= N.
(3.26)

In the following, all variables are understood to have time dependence of the form
exp(iω2N−1t). We note that neither (3.2c), no shear stress on the free surface, nor the y-
component of (3.3), the no-slip boundary condition, are satisfied by the leading-order
solution, which has

ux0 = −iω2N−1B̄N sin(2N − 1)πx e(2N−1)πy, (3.27)

uy0 = iω2N−1B̄N cos(2N − 1)πx e(2N−1)πy. (3.28)

This means that there must be boundary layers at the walls and the free surface,
across which these boundary conditions are satisfied. The free-surface boundary layer
is asymptotically weaker than those at the walls, and we will not consider it here. We
define scaled boundary layer variables

x̂ = Re1/2x, ûx0 = Re1/2ux0, (3.29)

with x̂, ûx0 = O(1) as Re → ∞. In terms of these, the leading-order problem in the
boundary layer at x = 0 is

∂p0

∂x̂
= 0, iω2N−1uy0 = −∂p0

∂y
+
∂2uy0

∂x̂2
,

∂uy0

∂y
+
∂ûx0

∂x̂
= 0, (3.30)

subject to

uy0 = ûx0 = 0 at x̂ = 0, (3.31)

p0 ∼ (2N − 1)2π2B̄N e(2N−1)πy as x̂→∞, (3.32)

ûy0 ∼ iω2N−1B̄N e(2N−1)πy as x̂→∞. (3.33)

At leading order, the pressure, p0, does not change across the boundary layer, and is
given by (3.32), whilst the solution for the fluid velocity is

uy0 = iω2N−1B̄N e(2N−1)πy{1− exp(−(iω2N−1)
1/2x̂)}, (3.34)

ûx0 = iω2N−1(2N − 1)πB̄N e(2N−1)πy

{
1− exp(−(iω2N−1)

1/2x̂)

(iω2N−1)1/2
− x̂
}
. (3.35)

As x̂ → ∞ in (3.35), the term linear in x̂ matches with the outer solution, (3.27).
The term independent of x̂ drives a term of O(Re−1/2) in the outer flow through the
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boundary condition

ux1 = (iω2N−1)
1/2(2N − 1)πB̄N e(2N−1)πy at x = 0, 1, (3.36)

using the antisymmetry of the flow, and hence

∂p1

∂x
= −(iω2N−1)

3/2(2N − 1)πB̄N e(2N−1)πy + iBo at x = 0, 1. (3.37)

Now, considering the other component of velocity, we can write a composite solution
for uy0 as

uy0 = iω2N−1B̄N e(2N−1)πy{cos(2N − 1)πx− exp(−(iω2N−1Re)
1/2x)

+ exp(−(iω2N−1Re)
1/2(1− x))}. (3.38)

If we extract the appropriate Fourier component from the difference of the two
exponentials in (3.38), we find that

uy0 = iω2N−1B̄N e(2N−1)πy

{
1− 4

(iω2N−1Re)1/2

}
cos(2N − 1)πx. (3.39)

The boundary layer therefore leads to a contribution to the y-component of the
velocity of O(Re−1/2), which we need to include in the kinematic boundary condition
at that order, so that

∂p1

∂y
= ω2

2N−1η1 − 4(iω2N−1)
3/2B̄N cos(2N − 1)πx at y = 0. (3.40)

Finally, the equation for the pressure and the dynamic boundary condition at
O(Re−1/2) are

∇2p1 = 0, (3.41)

p1 = −∂
2η1

∂x2
at y = 0. (3.42)

Now, if we had to solve for η1, we would run into the difficulty, associated with the
singularity at the contact line, that η1 is logarithmically singular as x→ 0 and x→ 1,
which we discussed in § 2. However, when determining the viscous contribution to the
rate of damping, Mei & Liu (1973) and Hocking (1987) showed that the divergence
theorem, along with the antisymmetry of the flow, can be used to determine B̄N
without solving for η1. In particular,∫ 1

0

∫ 0

−∞
(p0∇2p1 − p1∇2p0) dy dx

=

∫ 1

0

(
p0

∂p1

∂y
− p1

∂p0

∂y

)∣∣∣∣
y=0

dx− 2

∫ 0

−∞

(
p0

∂p1

∂x
− p1

∂p0

∂x

)∣∣∣∣
x=0

dy = 0. (3.43)

The key points are that, since ∂p0/∂x = 0 at x = 0, we do not need to know p1 there,
and that once (3.16), (3.37), (3.40) and (3.42) have been substituted into (3.43), the
terms in η1 cancel out after integration by parts. Note that this cancellation does not
occur if we attempt to determine the form of this resonant solution in more detail by
assuming that λ−1 = O(Re−1/2). The solution must therefore then be dependent upon
the precise mechanism by which the no-slip boundary condition is modified close to
the contact line, and we will not consider this further here.
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After some algebra, we find that the amplitude of the standing wave is

B̄N =
2eπi/4Bo

(2N − 1)13/4π13/4
. (3.44)

This amplitude decreases rapidly with N, with |B̄1|/|B̄2| ≈ 35.5. The mode most likely
to be excited is therefore that with N = 1, a sloshing motion with η ∝ cos πx and
amplitude

|B̄1| = 2Bo

π13/4
≈ 0.048Bo. (3.45)

The small numerical coefficient in this expression means that our linearization of the
whole problem is valid provided that 0.048Bo is small. We can now determine how
large λ can be, for a given value of the Reynolds number, before viscosity is no longer
negligible. When λ = ∞, the resonant frequencies are ω2n−1. For λ large but finite, if
ω = ω2N−1, we find from (3.20) that

η ∼ − λBo

(2N − 1)7/2π7/2
cos(2N − 1)πx. (3.46)

Comparing this with (3.44), we find that the maximum value of η for λ � 1 in the
absence of viscosity is comparable to the maximum value of η when λ = ∞ with
viscosity present when

λ = O(2Re1/2(2N − 1)1/4π1/4). (3.47)

For the mode with the lowest frequency, N = 1, this occurs when λ = O(2.6Re1/2).
For water with walls 1 cm apart, 2.6Re1/2 ≈ 75.

3.3. Pinned contact lines with viscosity (λ = 0)

In this case, the leading-order equations are

∞∑
m=1

∂B̂m

∂t
= 0, (3.48)

∂2B̂n

∂t2
+ ω2

2n−1B̂n = (2n− 1)

(
∂2B̂1

∂t2
+ ω2

1B̂1

)
. (3.49)

These have solutions of the form

B̂n = Kn0 +

∞∑
m=1

Knm exp(iΩmt), (3.50)

where Ωm are the resonant frequencies of the system. Equation (3.17) shows that these
are real, and solutions of

∞∑
n=1

2n− 1

ω2
2n−1 − Ω2

m

= 0. (3.51)

In addition, the coefficients satisfy

Kn0 =
1

(2n− 1)2π2
K10, Knm =

(2n− 1)(ω2
1 − Ω2

m)

ω2
2n−1 − Ω2

m

K1m. (3.52)

The time-independent part of the solution for the free surface is therefore just a
straight line between the two points where it is pinned at the walls, determined by
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the initial conditions. We seek the standing wave solution in the resonant case, when
ω = ΩM , in the form

B̂n =
1

(2n− 1)2π2
K0 +

(2n− 1)π

ω2
2n−1 − Ω2

M

KM exp(iΩMt). (3.53)

We proceed exactly as we did in the previous section, although the algebra is slightly
more involved since we must retain the full Fourier series representation of the
solution. In particular, we note that

Bn = (2n− 1)2π2B̂n + 4B0 = K0 +
ω2

2n−1

ω2
2n−1 − Ω2

M

KM exp(iΩMt) + 4B0. (3.54)

Now, in order to be consistent with (3.10), we must have

B0 = − 1
4
K0 − 1

4
KM exp(iΩMt), Bn =

Ω2
M

ω2
2n−1 − Ω2

M

KM exp(iΩMt), (3.55)

and hence

p0 = −KM exp(iΩMt)

∞∑
n=1

Ω2
M

ω2
2n−1 − Ω2

M

cos(2n− 1)πx e(2n−1)πy. (3.56)

We can now proceed without difficulty, and find that

KM = e uπi/4Bo

∞∑
n=1

1

(2n− 1)π(ω2
2n−1 − Ω2

M)

×Ω−3/2
M

 ∞∑
n=1

(2n− 1)π

(ω2
2n−1 − Ω2

M)2
+

∫ 0

−∞

{ ∞∑
n=1

(2n− 1)π

ω2
2n−1 − Ω2

M

e(2n−1)πy

}2

dy

−1

. (3.57)

This gives

|K1| ≈ 0.197Bo, |K2| ≈ 0.047Bo, (3.58)

so that, as for the case of a fixed contact angle, the lowest-frequency standing wave
is the one most likely to be observed. However, in this case |K1|/|K2| ≈ 4.2, so this
tendency is not as marked as for the fixed contact angle. In addition, for fixed values
of the Bond and Reynolds numbers, the amplitude of the lowest-frequency standing
wave is somewhat larger for the pinned contact line than for the fixed contact angle,
and hence the maximum Bond number for which our linearization of the problem
is appropriate is somewhat smaller. Although this seems rather counter-intuitive at
first sight, the pinned contact line does not generate a net flow along the boundary
layers, so we might expect that the consequent rate of damping would be lower. This
is consistent with Hocking’s (1987) results.

We can now determine how small λ can be, for a given value of the Reynolds
number, before viscosity is no longer negligible. When λ = 0, the resonant frequencies
are Ωm, the solutions of (3.17). For λ small but non-zero, with ω = ΩM , we find from
(3.20) that

R̂n ∼ 4(2n− 1)πBoΩM

λ(ω2
2n−1 − Ω2

M)

{
1

24
+ 4Ω2

M

∞∑
m=1

1

(2m− 1)4π4(ω2
2m−1 − Ω2

M)

}
. (3.59)
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For the mode with the lowest frequency, Ω1 ≈ 12.26, this gives

ηmax ∼ 1.45× 10−2

λ
Bo. (3.60)

At the same frequency, we find that the maximum value of η when λ = 0 with
viscosity present is

ηmax ∼ 5.86× 10−3Bo. (3.61)

Note that this is ten times smaller than the amplitude of the oscillation when λ = ∞,
given by (3.45). The amplitudes given by (3.60) and (3.61) are comparable when
λ = O(2.47Re−1/2). For water with walls 1 cm apart, 2.47Re−1/2 ≈ 8.8× 10−2.

4. Weakly nonlinear, inviscid solution for almost fixed contact angles,
close to resonance

Following the procedure used by Ockendon & Ockendon (1973), we find that
appropriate scaled variables for analysing the weakly nonlinear irrotational sloshing
of an inviscid fluid when Bo� 1 are

φ̂ = Bo−1/3φ, η̂ = Bo−1/3η,

with φ̂, η̂ = O(1) as Bo → 0, where φ is the velocity potential, and u = ∇φ. We
also need the contact line parameter λ to be of O(Bo−2/3), and therefore define
λ = Bo−2/3λ0, with λ0 = O(1) as Bo → 0. Finally, we define the detuning parameter
δ0 = O(1) through

ω = ω2n−1(1 + δ0Bo
2/3).

In terms of these scaled variables and parameters, we must solve

∇2φ̂ = 0 for 0 6 x 6 1, y 6 Bo1/3η̂(x, t), (4.1)

subject to

∂φ̂

∂x
= 0 at x = 0, 1 for y 6 Bo1/3η̂(x, t), (4.2)

∂φ̂

∂t
+ 1

2
Bo1/3|∇φ̂|2 =

∂2η̂

∂x2

{
1 + Bo2/3

(
∂η̂

∂x

)2
}−3/2

+ Bo2/3(x− 1
2
) sinωt

at y = Bo1/3η̂(x, t) for 0 6 x 6 1, (4.3)

∂η̂

∂t
=
∂φ̂

∂y
− Bo1/3 ∂φ̂

∂x

∂η̂

∂x
at y = Bo1/3η̂(x, t) for 0 6 x 6 1, (4.4)

|∇φ̂| → 0 as y → −∞ for 0 6 x 6 1, (4.5)

∂η̂

∂x
=


Bo2/3 1

λ0

∂η̂

∂t
at x = 0, y = Bo1/3η̂(0, t),

−Bo2/3 1

λ0

∂η̂

∂t
at x = 1, y = Bo1/3η̂(1, t).

(4.6)

We now expand φ̂ and η̂ as

φ̂ = φ̂0 + Bo1/3φ̂1 + Bo2/3φ̂2 + O(Bo), η̂ = η̂0 + Bo1/3η̂1 + Bo2/3η̂2 + O(Bo),
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and substitute into the governing equations. At leading order, assuming that the
solution is driven by the forcing of O(Bo2/3) that appears in (4.3), we obtain

φ̂0 = ηmax
ω

(2n− 1)π
cosω(t− t0) cos(2n− 1)πx e(2n−1)πy,

η̂0 = ηmax sinω(t− t0) cos(2n− 1)πx,

 (4.7)

with ηmax and t0 constants that we will determine later using a secularity condition.
Similarly, at O(Bo1/3), we obtain

φ̂1 = − 1
8
η2
maxω sin 2ω(t− t0){1 + 2 cos 2(2n− 1)πx e2(2n−1)πy},

η̂1 = 1
16
η2
max(2n− 1)π{1 + cos 2ω(t− t0)} cos 2(2n− 1)πx.

 (4.8)

Note that, because the leading-order term drives terms with twice the forcing fre-
quency, there is no secularity condition at this order, and we must go to O(Bo2/3).

After some tedious algebra, we arrive at the boundary value problem

∇2φ̂2 = 0 for 0 6 x 6 1, y 6 0, (4.9)

subject to

∂φ̂2

∂x
= 0 at x = 0, 1 for y 6 0, (4.10)

∂φ̂2

∂t
− ∂2η̂2

∂x2
= K1 sinω(t− t0) cos(2n− 1)πx+ non-secular

at y = 0 for 0 6 x 6 1, (4.11)

∂η̂2

∂t
− ∂φ̂2

∂y
= K2 cosω(t− t0) cos(2n− 1)πx+ non-secular

at y = 0 for 0 6 x 6 1, (4.12)

|∇φ̂2| → 0 as y → −∞ for 0 6 x 6 1, (4.13)

∂η̂2

∂x
= K3 cosω(t− t0) at x = 0, y = 0 and x = 1, y = 0, (4.14)

where

K1 = 1
2
ω2(2n− 1)πη3

max + 2δ0(2n− 1)2π2ηmax − 4

(2n− 1)2π2
,

K2 = − 3
32

(2n− 1)2π2ωη3
max, K3 =

1

λ0

ωηmax.

If we now define the inner products of φ̂2 and η̂2 with cos(2n− 1)πx as

η̄2(t) =

∫ 1

0

η̂2(x, t) cos(2n− 1)πx dx, φ̄2(t) =

∫ 1

0

φ̂2(x, 0, t) cos(2n− 1)πx dx,

we find that the secular parts of the problem give

d2η̄2

dt2
+ω2η̄2 = −2(2n−1)πK3 cosω(t−t0)+ 1

2
{(2n−1)πK1−ωK2} sinω(t−t0), (4.15)

d2φ̄2

dt2
+ ω2φ̄2 = − 1

2
{(2n− 1)2π2K2 − ωK1} cosω(t− t0) + 2ωK3 sinω(t− t0). (4.16)
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Figure 6. The response curve, calculated using (4.18), when Bo = 0.03 and λ = 200. The crosses
indicate the amplitude of numerically calculated solutions, whilst circles indicate solutions that were
unstable when used as initial conditions for numerical solutions. Note that ω1 = π3/2 ≈ 5.568.

It is now straightforward to choose ηmax and t0 so that these secular terms are
eliminated. We find that t0, which represents the phase change between the response
of the fluid and the external forcing, satisfies

sinωt0 = − 1

λ0

ω3

(2n− 1)π
ηmax, (4.17)

whilst ηmax, which gives the amplitude of the forced fluid motion, satisfies

19
64
ω4η3

max + (2n− 1)πω2δ0ηmax − 2

√
1− ω4

λ2
0

(2n− 1)πη2
max = 0. (4.18)

This weakly nonlinear response is similar to that of a soft spring, whose elastic
modulus decreases with deformation (see Ockendon & Ockendon 1973 for more on
this). The resonant frequency of the system decreases as the amplitude of the forcing
increases. Physically, the fluid that sloshes up the sides of the container takes longer
to return towards the equilibrium position as the amplitude of the forcing increases
and, in order to be synchronized with this fluid motion, the external forcing effectively
has to wait for the fluid to move down the walls by decreasing its frequency. This
effect can be seen clearly in the nonlinear solutions that we discuss in the next section.

A typical response curve is shown in figure 6. As is usual in systems of this type,
there is the possibility of hysteresis. If the external frequency is higher than ω2n−1 and
is slowly decreased, the amplitude of the response will follow the upper branch of the
curve until it reaches the critical frequency at which the upper branch ends, when the
amplitude of the response will drop onto the lower branch. If the forcing frequency
is then slowly increased, the solution remains on the lower branch.
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5. Numerical solution of the nonlinear, inviscid problem
Now that we have studied the behaviour of small-amplitude motions of the free

surface, we turn to the problem of determining the behaviour when the lateral forcing
is large enough that, at leading order, we must solve the fully nonlinear inviscid
problem given by (2.1) to (2.8) with Re−1 = 0 and u = ∇φ.

To solve the nonlinear free-surface problem, we adapt the desingularized integral
equation technique described by Tuck (1997). This method seems to be more stable
than the standard boundary integral technique, and in the following calculations
no smoothing of the solution has been used. Beginning with the work of Cokelet
& Longuet-Higgins (1976), who introduced a five-point smoothing formula, most
numerical solutions of similar free-surface problems with surface tension have used
some sort of smoothing to control grid-scale oscillations in the solution. A notable
exception is the work of Hou, Lowengrub & Shelley (1994), who showed how to
construct a semi-implicit numerical scheme by treating the stiff part of the governing
equations implicitly. This allowed them to use a large number of points in their
discretization without having to use a prohibitively small time step. An important
observation made by Hou et al. is that, for fully explicit methods, the maximum
possible timestep is controlled by the size of the smallest spatial separation in the
discretization of the free surface. This has the unfortunate consequence that, the
greater the required spatial resolution, even if it is localized in a small region of high
surface curvature, the smaller the largest stable timestep.

5.1. Numerical method

We use a Lagrangian, time-explicit method to solve the boundary value problem
given by (2.1)–(2.8) with Re−1 = 0 and u = ∇φ. We solve for the position of N + 2
points, (xj, yj) for j = 0, 1, . . . N + 1, initially equally spaced along the free surface. At
all times, x0 = 0 and xN+1 = 1, so that j = 0 and j = N + 1 index the positions of
the contact lines. We also solve for the velocity potential, Φj , at the other free-surface
points, j = 1, 2, . . . N. At the contact lines we can calculate the contact line velocity,
vj = ∂φ/∂y(xj, yj) for j = 0 or N + 1, by substituting a numerical approximation of
the contact angle into (2.8).

5.1.1. Solving Laplace’s equation

A solution of Laplace’s equation that has no normal velocity at x = 0 and x = 1,
and no flow as y → −∞ is

G0(x, y) =
1

4π
log(sin2 1

2
πx+ sinh2 1

2
πy) + 1

4
y. (5.1)

Between the walls, this has a single source of unit strength at x = 0, y = 0. By
imaging this solution in x = 0, we obtain the Green’s function

G(x, y;X,Y ) =

{
G0(x−X, y − Y ) when X = 0 or 1,

G0(x−X, y − Y ) + G0(x+X, y − Y ) when 0 < X < 1.
(5.2)

We can use this Green’s function to construct an approximate solution of Laplace’s
equation by seeking a solution of the form

φ(x, y) =

N+1∑
j=0

qjG(x, y;Xj, Yj), (5.3)
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Free-surface points

Figure 7. The discretization of the free surface and the associated point sources.

where (Xj, Yj) are the positions of N + 2 sources and qj are their strengths. In
essence, the boundary integral method uses (xj, yj) = (Xj, Yj), placing the sources
at the free-surface points. In the desingularized integral equation method, which we
choose to use here, each source point (Xj, Yj) is placed outside the fluid. We place our
sources a distance above the free surface equal to the average of the distance between
(xj, yj) and the two adjacent free-surface points, in the normal direction at (xj, yj) for
j = 1, 2, . . . N, as shown in figure 7. If this results in a point lying outside the region
between the walls, we simply move the point in the x-direction to lie on the wall. The
sources associated with the two contact lines, j = 0, N + 1, are each placed above the
contact line a distance half the spacing between it and the adjacent free-surface point.
A rigorous criterion for deciding the optimum placing of the sources is not known.

If we know φ at the free-surface points j = 1, 2, . . . N and ∂φ/∂y at the contact
lines, the source strengths, qj , satisfy the linear equations

N+1∑
j=0

Aijqj = Bi, (5.4)

where

Aij =

{
G(xi, yi;Xj, Yj) for i = 1, 2, . . . N,

(∂G/∂y)(xi, yi;Xj, Yj) for i = 0 or N + 1,
(5.5)

Bi =

{
Φi for i = 1, 2, . . . N,

vi for i = 0 or N + 1.
(5.6)

At each timestep we calculate the source strengths, qj , by solving (5.4) using Gaussian
elimination with partial pivoting. We can then calculate the velocity field at any point
(x, y) using

u(x, y) =

N+1∑
j=0

qj
∂G

∂x
(x, y;Xj, Yj), v(x, y) =

N+1∑
j=0

qj
∂G

∂y
(x, y;Xj, Yj). (5.7)

In particular, we can find the velocity field at the N+ 2 free surface points. Note that
the matrix Aij is dense, asymmetric and not diagonally-dominant, so the solution of
(5.4) by Gaussian elimination is the most inefficient and time-consuming step in this
method.
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5.1.2. Timestepping

Once we have an approximation to the velocity field, the simplest approach is to
advect the free-surface points in this field, and update the velocity potential using
the Bernoulli equation. However, this leads to the migration of points along the free
surface, and hence to a non-uniform spacing. This is undesirable, firstly because it
reduces the maximum timestep that we can take using an explicit method, as discussed
above, and secondly because the discretization rapidly becomes unacceptably coarse
along parts of the free surfaces. This second drawback is particularly acute for us,
because the periodic, lateral forcing tends to drive the free-surface points into one
half of the domain. We can overcome this by noting, as observed by Hou et al. (1994),
that the tangential velocity of points in the free surface does not affect the flow. The
limiting tangential velocity approaching the free surface from the bulk of the fluid is
not necessarily equal to the tangential velocity of fluid particles actually on the free
surface, since the flow is inviscid. This means that we can manipulate the tangential
velocity in order to keep the spacing of the free-surface points fairly even, without
affecting either the shape of the free surface or the velocity potential. With u = (u, v)
the velocity field that we obtain by solving Laplace’s equation, nj the unit normal at
the point (xj, yj) and tj the unit tangent, both of which we can easily obtain from
our approximation to the free surface, we choose to advect the jth free-surface point
in the velocity field

ûj = (u · nj)nj + Tjtj . (5.8)

We can now choose a form for the tangential velocity, Tj , that tends to keep the
free-surface points fairly evenly spaced. We use

Tj = (N + 1)2(dsj − dsj−1), (5.9)

with the distance between adjacent free-surface points given by

dsj =
√

(xj+1 − xj)2 + (yj+1 − yj)2. (5.10)

This is equivalent to putting linear springs between neighbouring free-surface points.
Comparisons between numerical solutions using this method and solutions advecting
the free-surface points in the velocity field u are in good agreement, at least until the
discretization in the latter solutions becomes too coarse to be reliable. We can think
of (5.9) as diffusing away differences in point spacing.

The evolution equations for the xj , yj and Φj are

Djxj

Dt
= ûj ,

Djyj

Dt
= v̂j ,

DjΦj

Dt
= û · u− 1

2
|u|2 + κj + Bo sinωt xj, (5.11)

where

Dj

Dt
=

∂

∂t
+ ûj · ∇,

and κj is the curvature of the free-surface at the jth free-surface point. We calculate κj ,
as well as the contact angles and the direction of the normal at each free-surface point
using quartic splines. We integrated equations (5.11) using a second-order Runge–
Kutta method, controlling the accuracy of the solution using a simple adaptive
timestepping technique.
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Figure 8. A numerical solution of the problem with periodic boundary conditions, shown at
intervals of 0.1 time units, which correctly reproduces a solution found analytically by Crapper
(1957).
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Figure 9. The maximum amplitude of the displacement of the free surface when λ = 10, Bo = 0.1
and ω = π3/2. The broken line indicates the amplitude predicted by the linear theory.

5.2. Comparison of numerical and analytical solutions

5.2.1. Comparison with exact solutions for capillary waves

As an initial test of this numerical method, we replace the contact lines with
periodic boundary conditions and use as initial conditions the exact capillary wave
solutions discovered by Crapper (1957). These propagate without change of form
at a known speed. Numerical solutions, an example of which is shown in figure 8,
correctly reproduce this behaviour.
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Figure 10. The solution when λ = 0.1, ω = 12.26 and Bo = 5.

5.2.2. Comparison with the linearized solution for small-amplitude forcing

Starting from stationary initial conditions, the amplitude of the numerically cal-
culated solution for forcing of small amplitude is, after the initial transients have
decayed, always in excellent agreement with the analytical solution calculated in § 3.
As an example, figure 9 shows the maximum amplitude of the displacement of the
free surface when λ = 10, Bo = 0.1 and ω = π3/2, the resonant frequency for λ = ∞.
The broken line indicates the amplitude predicted by the linear theory, and we can
see that the agreement is excellent.

5.2.3. Comparison with the weakly nonlinear solution for λ� 1

In order to compare our numerical solutions with the weakly nonlinear analysis of
§ 4, we choose a typical case, λ = 200, Bo = 0.03, and use initial conditions consistent
with the asymptotic solution for a range of values of ω and each possible value of
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Figure 11. The solution when λ = 1, ω = π3/2 and Bo = 10.

ηmax. We then let the solution settle down to a stable periodic solution, and record the
maximum value of η. These are marked as crosses on figure 6. If the solution did not
remain close to the solution predicted by the weakly nonlinear analysis, we concluded
that the solution is unstable, and marked this with a circle in figure 6. These results
are consistent with the asymptotic analysis.

These three test cases give us confidence that our numerical solution method is
accurate, and we move on to study fully nonlinear solutions.

5.3. Nonlinear numerical solutions†
5.3.1. Solutions with almost pinned contact lines (λ� 1)

In numerical simulations with λ small, once Bo is large enough that the solution
deviates significantly from the linearized solution, the contact angle starts to approach

† Mpeg movies of all of the following simulations can be obtained from
http://for.mat.bham.ac.uk/J.Billingham/mpf.htm. These illustrate the results much more clearly
than my attempts at describing them.
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Figure 12. The solution when λ = 1, ω = π3/2 and Bo = 20.

π, at which point the simulation cannot be continued, since the numerical sources on
the wall become too close to the free surface. A typical example is shown in figure 10.

5.3.2. Solutions with λ = O(1)

For moderately large values of Bo, a nonlinear periodic sloshing motion occurs. A
typical example is shown in figure 11. For sufficiently large Bo, the fluid falls back on
itself, a point beyond which we cannot continue the simulation, as shown in figure 12.

5.3.3. Solutions with almost fixed contact angles (λ� 1)

For moderate values of Bo, the motion of the fluid appears to be chaotic, as shown
for a typical example in figure 13. Basically, the solution is similar to that shown for
λ = 1 in figure 11, but with high-frequency, high-curvature transients superimposed.
These regions of high curvature are similar to those found in previous studies of
steady large-amplitude capillary and capillary–gravity waves. A close up of one such
region is shown in figure 14, and should be compared to the highly curved region of
the capillary wave shown in figure 8 and to figure 5 of Vanden-Broeck & Schwartz
(1979).

For larger values of Bo, in contrast to the more highly damped motion when
λ = O(1), a region of the fluid pinches off at one of the walls, and the simulation
can proceed no further. A typical example is shown in figure 15. Alternatively, the
fluid may hit the opposite wall before pinch off occurs. For example, this occurs
when Bo = 18, and the other parameters are unchanged from those used to produce
figure 15.
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Figure 13. The solution when λ = 10, ω = π3/2 and Bo = 10.

6. Conclusions
In this paper we have considered a model problem, in which a fluid constrained by

solid walls and moving contact lines is subjected to external forcing in the absence
of gravity. After considering various analytical solutions, valid when the amplitude
of the motion is sufficiently small, we studied the large-amplitude motion of the free
surface using a desingularized integral equation technique. We found that the motion
of the free surface, which can be periodic or chaotic, and can involve a change of
topology, either through self-intersection or through pinch off at a wall, is crucially
dependent on the behaviour of the contact angle as a function of contact line velocity.

The present investigation can be extended in a number of directions, which are
currently being studied.

(i) The model we have used for the contact line is very simple, and may not be
fully realistic. We aim to use instead the model proposed by Shikhmurzaev (1993) to
determine how this affects the behaviour of the free surface.

(ii) The desingularized integral equation technique that we have used to solve
the nonlinear inviscid problem is computationally very expensive, both because it
involves inverting a full, unstructured matrix and because the problem is inherently
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Figure 15. The solution as the fluid pinches off at the right-hand wall,
when λ = 10, ω = π3/2 and Bo = 16 at t = 1.15.

very stiff. In order to overcome these problems, we plan to modify the semi-implicit
method developed by Hou et al. (1994) to include contact lines. This would allow
us much greater resolution of the free surface, since the method is computationally
very efficient. In addition, this would open up the possibility of a simulation of the
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three-dimensional version of this problem (for example, sloshing in a cylinder), which
is completely out of reach using the desingularized integral equation method.

(iii) It is straightforward, although tedious, to include the effect of finite gravity
in the analytical part of this work. In principle, it is also straightforward to include
it in our numerical method. However, the need to resolve the capillary length scale,√
σ/ρg, rules out the use of the desingularized integral equation method, which is

too computationally expensive.
(iv) We have neglected the effect of viscosity in our nonlinear simulations. Viscosity

will act mainly in wall and surface boundary layers, and therefore our simulations
underestimate the amount of damping that occurs. One approach to understanding
this effect is to try to solve the associated boundary layer problems, including an
appropriate model that eliminates the stress singularity at the moving contact line
(Dussan V. & Davis 1974; Shikhmurzaev 1993). Another approach is to attempt a
full Navier–Stokes simulation, as performed by Kamotani et al. (1995) and Wölk et
al. (1997) for small-amplitude motions. The front-tracking method used by Popinet
& Zaleski (1999) would be a sensible choice. Other possible methods are discussed in
Scardovelli & Zaleski (1999).

I would like to thank Professor Ernie Tuck for suggesting this problem to me and
allowing me to adapt his desingularized integral equation code to solve it, and also for
his and his colleagues’ hospitality at the University of Adelaide during my sabbatical
in Australia. I would also like to thank the Royal Society for a travel grant, which
made this collaboration possible.
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